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SHOCK COMPRESSION OF A PLATE ON A WEDGED-SHAPED TARGET

UDC 537.84A. A. Charakhch’yan

Problems of compression of a plate on a wedge-shaped target by a strong shock wave and plate
acceleration are studied using the equations of dissipationless hydrodynamics of compressible
media. The state of an aluminum plate accelerated or compressed by an aluminum impactor
with a velocity of 5–15 km/sec is studied numerically. For a compression regime in which a
shaped-charge jet forms, critical values of the wedge angle are obtained beginning with which
the shaped-charge jet is in the liquid or solid state and does not contain the boiling liquid.
For the jetless regime of shock-wave compression, an approximate solution with an attached
shock wave is constructed that takes into account the phase composition of the plate material
in the rarefaction wave. The constructed solution is compared with the solution of the original
problem. The temperature behind the front of the attached shock wave was found to be consid-
erably (severalfold) higher than the temperature behind the front of the compression wave. The
fundamental possibility of initiating a thermonuclear reaction is shown for jetless compression
of a plate of deuterium ice by a strong shock wave.

Introduction. In the present paper, we consider the following problem. A wedge-shaped lead target
and a plate of a different material form angle ϕ (Fig. 1). A shock wave is generated on the external surface
of the target by an aluminum impactor which collides with the plate with velocity v. The initial compression
stage is examined in which the plate has not yet completely penetrated into the target. The problem is solved
using the hydrodynamic equations for compressible media and the equations of state that are valid over a
broad range of parameters [1]. Viscosity and thermal conductivity are neglected.

The present problem is similar to the well-known problem of plate acceleration with velocity v, which
is considered in theoretical studies of shaped-charge jets and conditions of their formation (see, for example,
[2–7]). Two types of flow are possible (Fig. 2). For large values of ϕ, a shaped-charge jet of the plate material
forms along the target (Fig. 2a). For small ϕ, there is a jetless regime of compression (Fig. 2b). After
conversion to a moving coordinates system attached to the moving point of contact A (Fig. 2b), the flow
becomes nearly stationary with a stream of the plate material incident on the point of contact and an attached
shock wave, which causes motion of the stream along the target. The critical value ϕ = ϕ∗ beginning with
which a shaped-charge jet arises is determined from the condition of existence of a stationary shock wave.

In contrast to the problem of plate acceleration, in the problem of plate compression by a shock wave,
the flow in the plate away from the target is determined by the rarefaction wave and, thus, is not homogeneous.
Moreover, in the case of a strong shock wave, the phase composition of the target material varies. Figure 3
gives the isentropes of aluminum in the plane “density–temperature” obtained from the tabulated equation
of state used in the calculations. The entropy increases with increase in the temperature for fixed density.
The regions corresponding to different phase states are also indicated here. On each isentrope, the pressure
increases with increase in the density, and the point with minimum density corresponds to atmospheric
pressure. Thus, each isentrope determines unloading of material particles with specified entropy in the
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Fig. 1 Fig. 2

Fig. 1. Diagram of the problem.

Fig. 2. Types of flow: (a) flow with a shaped-charge jet; (b) jetless flow (the dotted line is the attached
shock wave).

Fig. 3. Isentropes (solid curves) and phase composition of aluminum: SOL is the solid
body, L is the liquid, LG is the boiling liquid, and NP is the nonphysical region.

rarefaction wave. It is obvious that there is a critical value of the entropy Scr above which unloading of the
material proceeds with formation of a region of phase equilibrium between the liquid and the gas, i.e., the
boiling liquid. For the case of an aluminum plate and an aluminum impactor, the critical entropy in the
shock wave corresponds to an impactor velocity of v ≈ 11 km/sec.

We used the equations of state for the materials in the form of tabulated dependences of the pressure
p and the internal energy ε on the temperature T and the density ρ. The dependences for deuterium were
constructed using the dependences for hydrogen pH(T, ρ) and εH(T, ρ) by the formulas

p(T, ρ) = pH(T, ρ/2), ε(T, ρ) = εH(T, ρ/2)/2.

The hydrodynamic equations are calculated using the same software package as in [8–10]. The interfaces
are distinguished explicitly in the form of lines of a curvilinear moving grid, and quasimonotonic schemes of
second-order accuracy are employed. The procedure of [11] was used for suppression of entropy computation
traces.

Shaped-Charge Jets. Experiments on explosive initiation of the (D–D) reaction in conical targets
are described in [7, 12, 13], and results of numerical modeling are given in [8–10]. In these experiments,
ring shaped-charge jets arose, which collapsed on the symmetry axis and, in the initial stage, differed little
from plane jets. For experimental parameter values with a rather low neutron yield, numerical solution of
the hydrodynamic equations gives a shaped-charge jet of the boiling liquid, which appears to be the reason
of jet fracture. In experiments with a large neutron yield jets in the solid or liquid state arose with a small
magnitude of the tensile stress inside the jet.

Chou et al. [5] obtained a criterion for the formation of a continuous jet or a dispersed jet by analysis
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TABLE 1

ϕ, deg M pmin, GPa

70 0.72 −0.7

65 0.93 −0.9

62.5 1.03 −4.4

60 1.15 −5.4

55 1.4 −6

50 1.67 −4.4

TABLE 2

v, km/sec
ϕlg, deg M(ϕlg) ϕcalc

∗ , deg ϕappr
∗ , deg

acceleration impact acceleration impact acceleration impact acceleration impact

5 35 35 1.4 1.45 25 25 21.5 22

7.5 40 45 1.8 1.5 30 30 26 27.5

10 50 67.5 1.7 0.94 32.5 32.5 29.5 31

12.5 55 — 1.7 — 37.5 35 32 33.5

15 65 — 1.4 — 37.5 37.5 34 36

of experimental data and calculation results for jets produced by collision of plates. The critical value of
the angle ϕ for which the jet characteristics change is the value for which the Mach number M of the flow
incident on the point of contact is equal to 1. This is confirmed in [5] by calculations both allowing for
and ignoring jet fracture within the framework of a certain model. In the last case, at M > 1, considerable
negative pressures arose in the base of the jet. Table 1 gives the dependence of the maximum magnitude of
negative pressure in the jet pmin and the Mach number M on the angle ϕ obtained in the present work for
the problem of acceleration of an aluminum plate with a velocity of 10 km/sec. The calculation results agree
with those in [5]. For M ≈ 1, the value of pmin in a small range of the angle ϕ changes by a factor of about 5.
Therefore, the criterion of [5] is also valid for the present problem.

Table 2 gives the values of the angle ϕlg beginning with which there is no boiling liquid in the jet
and the corresponding values of the Mach number M(ϕlg) versus the plate velocity (for the acceleration
problem) and an impact velocity of 5–15 km/sec (for the problem of impact on the plate). The absence
of the boiling liquid does not imply that the jet is continuous because jet fracture can occur as a result of
large tensile stresses in the solid or liquid state. The results obtained supplement the well-known result of
[5] on the dispersion of jets for hypersonic flow incident on the point of contact. For an impact velocity of
v > vcr ≈ 11 km/sec, rarefaction of the shock wave proceeds with formation of the boiling liquid. Apparently,
in this case, the boiling liquid will be present in the shaped-charge jet for any value of ϕ. Therefore, Table 2
does not give the corresponding values of the angle ϕlg.

In the neighborhood of the point of contact, the solution of the problem of plate acceleration approaches
a certain stationary solution with time (see, for example, [5]). Obviously, if ϕlg is determined from this
stationary solution, then M(ϕlg) > 1 because M(ϕ) 6 1 implies that the stationary solution is isentropic. At
the initial compression stage, the flow always contain shock waves, and, therefore, the condition M(ϕlg) > 1
is generally is not obvious. Nevertheless, as follows from Table 2, this condition is satisfied in almost all
cases. According to the criterion of [5], this implies that the real jet is also dispersed for ϕ > ϕlg. Therefore,
the problem of what changes occur in the real jet with change in ϕ in the neighborhood of ϕlg is beyond the
scope of the present work and requires experimental studies. An exception is the case of impact on the plate
with a velocity of 10 km/sec, which is close to vcr for M(ϕlg) < 1. In this case, transition from a continuous
jet to a dispersed jet occurs for ϕ ≈ ϕlg.

Jetless Compression. Before considering the problem of shock-wave compression of the plate, we
construct an approximate solution of the problem of plate acceleration with velocity v. It is assumed that
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after conversion to a moving coordinate system attached to the point of contact, there is a stationary solution
with an attached shock wave (see Fig. 2b). In this coordinate system, a homogeneous flow of the plate
material is incident from the left on the point of contact with velocity v/ tan ϕ, and the target material flow
moves with velocity v/ sinϕ along the target.

Let us consider a homogeneous flow of material with density ρ0, pressure p0, and velocity v0. The
parameters behind the front of an oblique shock wave, in particular, the angle of rotation of the flow θ,
are uniquely determined by the slope of the shock wave α and the equations of state. The corresponding
dependence is denoted by Θ(ρ0, p0, v0, α). Solving the equation

Θ(ρ0, p0, v0, α) = θ (1)

for α, one obtains the dependence of the flow parameters behind the shock-wave front on the angle θ. The
corresponding dependence for pressure is denoted by P (ρ0, p0, v0, θ).

Let us return to the problem of plate acceleration. We denote the slope of the target behind the point
of contact by β (see Fig. 2b). The shock wave in the plate rotates the flow through angle β, and the shock
wave in the target rotates the flow through angle ϕ − β. The condition of equality of the pressures in the
plate and the target gives the following equation for β:

Ppl(ρ
pl
0 , p

pl
0 , v/ tan ϕ, β) = Pt(ρt

0, p
t
0, v/ sinϕ,ϕ− β), (2)

where the subscripts and superscripts “pl” and “t” correspond to the plate and target, respectively. The
solution of Eqs. (1) and (2) was found by exhaustion of values for the variables α [for Eq. (1)] and β [for Eq.
(2)] with a small step.

As is known (see, for example, [14]), for Eq. (1) there is a limiting value θ∗ that restricts the region
of existence of solutions of this equation to the interval 0 < θ < θ∗, on which Eq. (1) has two solutions.
The solution with the smaller α and smaller pressure behind the wave front is usually called a shock wave
of the weak family. The second solution is called a shock wave of the strong family. Different combinations
of solutions (1) for the plate and impactor give four equations of the form (2), which will be denoted by two
characters: SS, SW, WS, and WW. The first character corresponds to the plate, and the second corresponds
to the target; S denotes the strong family and W denotes the weak family. A numerical study of these
equations shows that only the equation WW has a solution on the interval 0 < ϕ < ϕappr

∗ , where ϕappr
∗ is

determined by the limiting value θ∗ for the plate. The equations WS and SS do not have solutions, and the
equation SW has a solution only on the small interval 0 < ϕ1 < ϕ < ϕappr

∗ , which is bounded from below.
The results given below are obtained using Eq. (2) of the WW type.

Let us consider the problem of shock-wave compression of the plate. The flow in the plate away
from the target is determined by the rarefaction wave, in which the thermodynamic functions vary along
the isentrope corresponding to the entropy behind the shock-wave front. The velocity of the material in the
rarefaction wave as a function of the pressure p has the form

v(p) = uc +

p∫
pc

dp

a(p, ρ(p))
, (3)

where uc and pc are the velocity and pressure behind the shock-wave front, respectively, a(p, ρ) is the mass
velocity of sound, and the function ρ(p) is determined by the isentrope.

As an approximate solution of the problem we take a solution of Eq. (2) in which (ρpl
0 , p

pl
0 ) is the point

lying on the corresponding isentrope and v = v(ppl
0 ) is the velocity defined by formula (3). If the shock-wave

entropy S is smaller than the critical value Scr, i.e., upon unloading to atmospheric pressure p0, the material
remains in the liquid or solid states (see Fig. 3), it is assumed that ppl

0 = p0. For S > Scr, as (ρpl
0 , p

pl
0 ), we use

the point of intersection of the isentrope with the liquid-phase boundary. For the isentrope shown in Fig. 3,
this point lies on the interface between the liquid and the boiling liquid. With increase in the shock-wave
intensity, the boiling liquid region on the segment of the corresponding isentrope disappears, and the point
(ρpl

0 , p
pl
0 ) falls on the liquid–gas interface.
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Fig. 4. Isobars (in gigapascals) and interfaces near the point of contact (L is the liquid, LG is
the boiling liquid, and G is the gas) for aluminum plate (ϕ = 30◦ and v = 15 km/sec) (a) and
deuterium plate (ϕ = 35◦ and v = 50 km/sec) (b).

TABLE 3

v, ϕ, βcalc, βappr, αcalc, αappr, pcalc, pappr, Tcalc, Tappr,

km/sec deg deg deg deg deg GPa GPa 103 K 103 K

5 20 15 13 43 47.4 98 102 3.5 3.85

7.5
25 17 17.2 46 47.2 165 171 7.6 9.6

20 15 13.9 34 34 159 160 7.3 8.7

30 21.5 21.2 50 52.7 240 250 16 20

10
25 18 17.9 37 38.7 230 237 16 18.4

20 16 14.2 30 29 230 235 15 18.1

15 10 10.6 20 21 240 235 15 18.2

12.5
30 21 21.6 42 46 310 330 30 30.8

25 19 18 33 35 310 320 30 30.2

32.5 25 24.2 43 47.2 390 397 44 49

15 30 23 22.3 40 41.5 400 394 42 48.7

25 17 18.5 30 32.5 430 398 42 49

The choice of the point (ρpl
0 , p

pl
0 ) described above is based on calculation results, according to which

the attached shock wave arises in the liquid phase, i.e., it is attached to the target above the point of contact
of the plate free boundary the with the target, as shown in Fig. 4 for compression of an aluminum plate and a
plate of deuterium ice by a rather strong shock waves. In the case of aluminum (Fig. 4a), the isentrope of the
material compressed in the shock wave passes through the boiling liquid state, and in the case of deuterium
(Fig. 4b), it passes through the gas phase, which is a completely ionized plasma in this case.

We compare the approximate solution with the calculation of the hydrodynamic equations for the
case of an aluminum plate. The critical values of the angle ϕ are given in the last four columns of Table 2.
The angle ϕcalc

∗ is the maximal angle at which the calculation of the hydrodynamic equations does not yet
give a shaped-charge jet. To determine ϕcalc

∗ , we performed a series of calculations with a step of 2.5◦ in
ϕ. The angle ϕappr

∗ introduced above, which bounds the region of existence of the approximate solution, is
determined with an accuracy of 0.5◦. For all cases given in Table 2, ϕcalc

∗ > ϕappr
∗ , i.e., the approximate

theory yields smaller values of ϕ∗ for the jetless compression regime. For the problem of plate acceleration,
the difference ∆ϕ = ϕcalc

∗ − ϕappr
∗ varies within 3–5◦. For the problem of compression by the impactor,

despite the inhomogeneity of the flow incident on the point of contact, ∆ϕ has smaller values: from 3◦ for
v = 5 km/sec to 1.5◦ for v > 10 km/sec. The passage through the critical value vcr, for which the boiling
liquid appear in the flow, does not influence ∆ϕ.

For the problem of compression by the impactor for different v and ϕ, Table 3 gives the slope angle of
the attached shock wave α, the angle β (see Fig. 2b), and the pressure and temperature behind the front of the
attached wave obtained from calculations of the hydrodynamic equations and from the approximate solution
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Fig. 5 Fig. 6
Fig. 5. Pressure and temperature versus the angle ϕ (curves 1 and 2, respectively) in the approximate so-
lution behind the attached wave for an aluminum plate (v = 10 km/sec): solid curves refer to compression
by the impactor and dashed curves refer to acceleration.

Fig. 6. Temperature behind the fronts of the attached (Ta) and compression (Tc) waves and the wave
reflected from the target (Tr) versus the pressure behind the front of the compression wave for compression
of the plate of deuterium ice (ϕ = 30◦) (curves 1, 2, and 3, respectively); the dashed curve shows the
density behind the attached wave front related to the ice density.

(subscripts “calc” and “appr”, respectively). The thermodynamic functions were determined near the point
of attachment of the shock wave. With distance from the point of attachment, the values of the thermody-
namic functions decrease. There is good (within 10%) agreement between the angular characteristics and
pressures. The difference in temperature reaches 20%, which is apparently explained by the higher sensitivity
of temperature to the accuracy of magnetohydrodynamic calculations. As in the case of determination of ϕ∗,
the passage through vcr does not influence the accuracy of the approximate solution.

Using the approximate solution, we consider in more detail the dependence of the thermodynamic
functions behind the front of the attached shock wave on the parameters of the problem. Figure 5 gives
the dependences of the pressure and temperature on the angle ϕ for the aluminum plate in the problems
of acceleration and impact at v = 10 km/sec. It is evident that except in a small neighborhood of ϕappr

∗ ,
both functions depend weakly on ϕ. Since calculations using hydrodynamical equations do not confirm the
increase in the thermodynamic functions near ϕappr

∗ , these functions can be considered independent of ϕ with
an error of less than 10%.

We note that the temperatures for the two problems differ markedly. For shock-wave compression, the
temperature is two times higher, which is due to the increase in the entropy of the flow incident on the point
of contact.

For plate acceleration, the values of the thermodynamic functions behind the attached wave front
coincide almost exactly with the values for head-on impact of the plate on the lead target. For shock-wave
compression of the plate, the values behind the front of the attached wave differ markedly from the values
behind the front of both the compression wave and the wave reflected from the target.

The high temperature behind the attached wave front Ta indicates that a thermonuclear reaction can
be initiated by compression of a plate by a strong shock wave. Figure 6 gives the dependence of Ta on the
pressure behind the compression wave front pc for a plate of deuterium ice with a density of ρ0 = 0.175 g/cm3

and an initial temperature of 14 K. It is evident that the function Ta(pc) is linear. For comparison, the figure
gives the temperatures behind the fronts of the compression wave (Tc) and the wave reflected from the target
(Tr), which also depend linearly on pc and are about 3.5 times lower than Ta. At a pressure of pc ≈ 1500 GPa,
which is attainable on modern powerful laser systems, Ta > 2 · 106 K, which ensures a considerable rate of
the (D–D) reaction.
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Besides the temperature, the rate of the (D–D) reaction is also determined by the density of deuterium.
Figure 6 gives the density ρ behind the front of the attached wave. It is evident that ρ ≈ 1.5ρ0 and is almost
independent of pc. This value is smaller than the density behind the front of a strong compression wave
ρc ≈ 4ρ0.

Conclusion. For an aluminum plate accelerated or compressed by an aluminum impactor with a
velocity of 5–15 km/sec, we obtained the critical values of the angle ϕ beginning with which the shaped-
charge jet does not contain the boiling liquid.

For the jetless regime of shock-wave compression of the plate, we constructed an approximate solution
with an attached shock wave that takes into account the phase composition of the plate material in the
rarefaction wave. The approximate solution is in satisfactory agreement with the solution of the original
problem. The thermodynamic functions behind the attached wave front are shown to depend weakly on the
angle ϕ.

The temperature behind the attached wave front is severalfold higher than the temperature behind the
front of the compression wave. The fundamental possibility of initiating a thermonuclear reaction is shown
for jetless compression of a plate of deuterium ice by a strong shock wave.
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